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Abstract

the intersections of the nonnegative orthant in En with pairs of com-

plementary orthogonal subspaces are investigated. Applications to linear

inequalities and linear programming are then made by using Fredholm's

alternative theorem.

Introduction

The theory of linear inequalities, the classic reference on which is

(171, l/is closely related to the theory of linear equations. 1 This relation

is the subject of the present paper. We show that the main results in the

theory of linear inequalities (in finite dimensional vector spaces over arbi-

trary ordered fields) follow from two basic facts: (a) Theorem 4 below which

is an elementary property of the intersections of the nonnegative orthant

with pairs of complementary orthogonal subspaces. -/ b) Fredholm's

"alternative theorem." 1/ Thus new proofs, valid in arbitrary ordered

fields, are given for some well-known theorems in [18] [13] [2 and

[ 3] (corollaries 7, 8 and 9 below) and for the duality theorem of linear

programming / (remark 10 below).

1/ See also [1, [8] and the bibliography in [16]. pp. 305-322.
Z/ E.g., [15] and [ 8, § 16.
3/ Studied earlier in [5] [6] and [7].
4/ E. G., [ z0]. p. 340.
5/ A relation between duality and orthogonality was recently given in [19].



0. Notations

The notationsB used in this paper are:

{x:f(x)} the aet of elements x for which A~x) is true

{x) the let consisting of 2E

41 the empty set

4, C respectively element and set containment

U, A.- respectively set union, intersection and difference

F an artrar ordered field

E n the n-dimensional vector space over

othe zero vector in E n

1 = {x :x EE n . k =l k ~ 7  - i l . . k
i=l

the cone spne ythe vectors Yf.: i4l,. Q.k in E
k~ 

1

intG{f.:i4.,...,k) = {x:xCEZnx=Z a.f., a.e7,1 Ct.>O, i=l,...,k}
I i=l1 1 1

the interior of C{f.i: i=l,...,k}

bdry CY f: i~l,.. sk} = C{f.i: i=l.... sk) - mnt C{fi. i4l,. .. ,k)

the boundary of C{f.i: i=l,...,k}

{e. i=l, o. n) a fixed orthonormal base in E n

E n =C{e.: izi, Q ,n the nonnegative orthant in E n

For x, y En let:

x y denote x -y aEn

x y denote x - y tE n

x >Y denote x -Yh4intE n

For x,ye E nlet:

(x. y) = Mx~y. denote the inner product of x.

xI xI(-X.X) the norm nd x

xjLy denote (x,y)0O

ot
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For a subspace L in En let:

xjL denote x.Ly for all y e L

L L = {x: XE En, x.L L) , the orthogonal complement of L

dim L: the dimension of L

x+ L {y:y4En, y=x+,, I tL) atranslate of L

P,: the perpendicular projection on L, i e P, P T

L = {x:x*En, PLx = x}

For an mxn matrix A over T let:

AT denote the transpose of A

N(A) = {x:xeEn, Ax= 9) the null space of A

R(AT ) = {y:y*En , y =ATv for some vEE m } the rang space ofA T

1. Theorem: Let P be a perpendicular projection in En . Then the

following are equivalent:

(i) Py = has no solution y. 

(ii) Px = x has some solution x> e.

Proof: (i) =b (ii)

Proof by induction on rank P = k , k=Ol ,... sn Since both (i) and (ii) are

false for k = 0 , let first P be a perpendicular projection of rank l. R(P),

the subspace of all solutions of

(1) Px = x xa E n  1/

is of dimension 1 and therefore representable as:

(2) R(P) {x: xa tu , av FT-, u a non-zero solution of (1))

1I/ E go.s [I12],v41, theorem 2.
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Suppose now that (ii) is false. This is possible only in two (not mutually

exclusive) cases, where fu.) n are the coordinates of the u in (2):

Case A: ui = 0 for some l<i~n.

Case B: Uku, < 0 for some 1 < k, 1 .1 n , i.e., some two components

of u are of opposite sign.

In each case consider the vector v , given by its coordinates j.l as

follows:

CaseA: v.=1, v.=O for j Ai
1 J uk

CaseB: Vk=,v =- , u.jO for j k,1

The vector v satisfies

(3) v.> e

(4) v1 u

Combining (4) and (2) we conclude that v J R(P) and therefore satisfies l

(5) Pv =e

But (3) and (5) imply (i) to be false, and thus (i) => (ii) is proved for k 1

Suppose (i) -> (ii) is true for perpendicular projections of rank k, k=l,..., n-l.

Let P be a perpendicular projection of rank k+l, written as

(6) P-Q + Q

where Qi Q2 are perpendicular projections of ranks 1, k respectively

satisfying

(7) QI2z = 0 = Q Q -

l/ E.g., (12], p. 14 6 .

2/ [121, § 76, theorem 1.
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Suppose that P satisfied (i) . But Py = 0 if and only if Qly = 0 = Q 2 y;

hence both Q 1,Q 2 satisfy (i). By the induction hypothesis both , 12

satisfy (ii) . Thus there exist vectors: y > 0, z > 0 such that

(8) Q 1 y = y and Q 2
z = z .

The vector x = y + z is > 0 , and, because of (6), (7) and (8), satisfies (1).

Thus P satisfies (ii) and the proof of (i) => (ii) is completed.

(ii) => (i)

If Px=x>e thenfor any y.O:

0 < (x, y) = (Px, y) = (x, Py)

therefore Py A 0 .

2. Corollar Let L, L " be complementary orthogonal subspaces in En.

Then the following are equivalent:

(i) LNE+ = n0)

(ii) L N A rot E + n

Proof: Let PL.L be the projection P in theorem 1. Statements (i) and (ii)

are then equivalent to the corresponding statements in theorem 1.

Remark: A stronger result is given in theorem 4 below.

3. Corollary: Let L be a subspace in En, of dimension: dim L< n-2 ,

such that LNE+ = {0}. Then L is contained in a subspace M , with

dim M = dim L+l and MnE n ={0}.

I / Only the symmetry of P was used here,
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Proof: Let dim L =k, 0 <k <n xi?; and let x ..... Fx k be an orthonormal

basis of L I with 116 L1 fintEn (by corollary 2 this is always possible).

The subspace m = {L +Xx 2:X 4F I contains L and is of

dimension: dim M=dim L+l . Since Mi~x, and 116 intE n it follows

that mfnlE n={e}

Remark We have shown that any subspace L of E n, with dimension<C n - 2,

satisfying L nl E n = {O} can be extended to a subspace M, dim M = dim L +l1

and the same property. The maximal subspace H DL with Hn11 E = {o)

is a hyperplane.

4. Theorem: Let L be a subspace of E. Then the following are

equivalent:

(i) L nE' = {0}

(ii) L-L has a basis in nt E

(iii) For every x e En {x + L) 0 E is bounded, maybe empty.

Proof: The part (ii) -=>(i) foflows from corollary 2. Also (iii) ==>(i)

is obvious. for if (i) is false then (iii) is false with x = 0.* It remains

to prove that Ui) => (ii) and (i) => (iii)

Proof by induction on dimL =n- k, k = o's..n. The case k=0 is

trivial and the case kl= is proved exactly as in the part: (i) => (ii) of

theorem 1. Suppose that (i) >(ii) was proved for subspaces; of dimension:

n -k . and let L be a subspace of dimension: dim L = n -k - 1 such that

L E En = {e}
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By corollary 3 LCM with dimM=n-k and MNE+ = (0) . By the

induction hypothesis M has a basis in intE+ # say (g,: i=l....,k)

Let {f. i=l,.... ,n-k-l) be an orthonormal basis of L and {f.: i=lk.., )

be an orthonormal basis of M . Consider the vector

gk+l = fn-k + Xgl

where X eF satisfied:

SIfk, iI
maxn-k,i<0 9,i

The vector is: (a) in int E+ , (b) orthogonal to f,.. 0Wnk.

and thus in LA , (c) linearly independent of gl1 , gk " Therefore

{gl, - - k+1) is a basis of L -L in int E+n.

(i) => (iii)

Clearly it is enough to consider vectors x * L " 
* Let u be any vector

in L with Iu =1 Since LnE+ = n O) it follows that u must have

nonzero coordinates of opposite signs. For any x 4 LI E , the

vector x+au is > 0 only if the scalar a is bounded by

(9) max mx L) iuij x@Ox. max < a<in min M* 1

1 i . -1x o x<o
u i > 0 u?> 0 ui< 0 ui< 0

where xi, ui are the coordinates of x, u respectively. If the left hand side

in (9) exceeds the right hand side then {x+L) flE = , Otherwise

x+au i {x+L) nE+ only if I x+au= (xx)+a? <o, by (9)which completes

the proof.

U
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5. Corollary- Let L be a subspace of En of dimension k, k=l.,, ,n.

Then the following are equivalent:

Wi L nbdry E+U= C{el,. .,e p  1 < p15k.

(ii) L L has a basis in intC{ep+1 , **. , en}

Proof:

(i) => (ii)

Consider E p , the space spanned by {e , ., e p as a subspace of En, and

the quotient space of E n modulo EP: En/EP . From (i) it follows that

EPC L . Hence in En/Ep the subspace L/E p satisfies (i) of theorem 4.

Therefore LA/EP has a basis in int(E/EP) = int C{ep+ls... e n }
+n

But L-L/E p = LL and (ii) is established.

(ii) => (i)

From (ii) it follows that C{e , .... e p} C L and consequently (i) .

Remarks:

(a) If p = k then (ii) can be rewritten as

(ui') ;nEn= Ce p+l,...,,}

(b) If dim L < n - 2 it can be shown as in corollary 3 that L is contained

inasubspace M with dimM-dimL+l and MnbdryE+ =C{el,...,e p }

The maximal subspace H with HDL and HfbdryEn = C{e ,...e p I is

a hyperplane, e.g., [10], p. 316, theorem 33 (2) .

6. Corollary, Let L, LL be any pair of complementary orthogonal sub-

n n
spaces in E . Then there is a vector x in intE+ such that x = y+z ,

y.LnEn , z4LflE+.
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Proof:

Since the cas e: L =Ent L±-=({0} is trivial, let dim L =1,...n-1 Now

there are three mutually exclusive cases:

(i) LlE + = {0}
+

(iii) LflbdrE A40 ... ~ . ~~i Lan fit~

In case Mi we use corollary 2 and choose x as a vector in L-1 nl it E n

Thus x =z and y= e

In case (ii), coroflary 5 is used to construct x as x = y + z whzre

zELflfl~e~l..uel+and y is any vector in int C{elp. 0 0 eC }. By

n
remark (a) following coronlary 5, if p =dim L then any vector x in int E+

can be so represented.

Case (iii) is, by corollary 2, case (i) with L. L" permuted.

7. Coronlary: (Tucker [ 18]) Let A be any m x matrix over F.Then

the following system of equations and inequalities

Ax = A u >0

has solutions x 0 , AS0 satisfying

A Tu o+ x 0>0.
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Proof: Follows immediately from corollary 6, by letting L = R(AT) and

using Fredholm's alternative theorem ([ 20], p. 340) which for a linear

operator A: En-Em can be stated as: R(AT ) and N(A) are complementary

orthogonal subspaces in En , e.g., [12],§49.

Remark. This corollary is fundamental in the theories of linear inequalities

and linear programming, e.g. , [18]. We proved it here as a consequence of

two facts:

(a) Corollary 6 which states a simple property of the intersections of

E with arbitrary pairs of complementary orthoronal subspaces.

(b) Fredholn's alternative theorem

En = R(AT ) (2) N(A)

which is basic to the theory of linear equations.

The abundance of theorems (e. g., the Minkowski-Farkas-Weyl theorems [ 2]

and their consequences) which follow corollary 7, e.g., [ 18] emphasizes the

merits of a unified treatment of linear inequalities and equations. e.g., [151

8. Corollary (Jackson (13]. Charnes-Cooper [ 2]): Let A be any mxn

matrix over F- . Then the following are equivalent:

(i) Ax = has no solution x> .

(ii) Au )> e has solutions.

(iii) For any b Em the set {x: xE n , Ax=b, x>)0 is bounded,

maybe empty.

Proof: Setting, by Fredholn's alternative theorem, L = N(A) and L.L=K(A T

it follows that statements (i), (ii) and (iii) are equivalent to the corresponding

statements in theorem 4.



-11-

Remark: In the real case this theorem was proved by Jackson [131. The

part (i) -=>(iii) is close to the "opposite sign theorem" of Charnes-Cooper

21, [ 31, which states, more precisely, that (i) above is equivalent to:

(iv) The set

{x:xEEn , Ax=b, x> 0}

is spanned by its extreme points.

Property (iv), see [4], is not restricted to bounded sets when x is in an

infilnite dimensional vector space.

9. Corollary (Tucker [18]): Let K be a skew symmetric matrix over -. 1/

Then the system of inequalities

Kw >I w >

has a solution w0  such that

(10) Kw 0 +w ° > .

Proof: Consider the system of equations and inequalities

(x) > 0

by corollary 7 this System has solutions (2 and u0  such that

(U) (x)(~o 0 y K

Combining (11) and the fact that x° = -KTyo = Kyo it follows that wo o uo0

satisfies (10),

1/ Le., K=-KT.
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10. Remark: Corollary 9 was used to prove the duality theorem of linear

programming, e. g., [ 9] and [ II] . We conclude this paper by outlining an

alternative proof which, like our other results above, rests upon the

"Fredholrn alternative" theorem.

Consider the pair of dual problems

T T
maximize c x minimize w b

Ax<b TA T

x>O w >8

where A is an mxn matrixover F-, bEe m and cEEn.

To these problems there corresponds the (m+l) x (re+n+l) matrix:

Bt -b A I

where t is in F . For any given value of t we consider the subspaces

N(Bt) and R(BT) -- which are complementary orthogonal by Fredholm's

theorem--and their intersections with Em+n+l

N(B)fEm+n+l= :r at cTx =0
N(B) nen: -ab+Ax+y= 0

t + y abO.x,;Y: 4
TT t - bTw Pt - wb >RBflmnlI( T : "+A;1

pc+ -~+A w -_p T wJ

w / >~9

The duality theorem of linear programming (as well as the "complementary

slacknes" property, [11] , which is the statement that R(B E++n+l and

N(Bt)fEI+n+l are orthogonal setstfollows now by considering the above inter-

sections; the keys to the whole situation being the vanishing of the scalars

a, P and the value of t. The details are left to the reader.

1 / A similar relation between duality and orthogonality was studied by
Tucker in [ 19 ] . .
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